Hematopoietic, angiogenic and eye defects in Meis1 mutant animals.

نویسندگان

  • Tomoyuki Hisa
  • Sally E Spence
  • Rivka A Rachel
  • Masami Fujita
  • Takuro Nakamura
  • Jerrold M Ward
  • Deborah E Devor-Henneman
  • Yuriko Saiki
  • Haruo Kutsuna
  • Lino Tessarollo
  • Nancy A Jenkins
  • Neal G Copeland
چکیده

Meis1 and Hoxa9 expression is upregulated by retroviral integration in murine myeloid leukemias and in human leukemias carrying MLL translocations. Both genes also cooperate to induce leukemia in a mouse leukemia acceleration assay, which can be explained, in part, by their physical interaction with each other as well as the PBX family of homeodomain proteins. Here we show that Meis1-deficient embryos have partially duplicated retinas and smaller lenses than normal. They also fail to produce megakaryocytes, display extensive hemorrhaging, and die by embryonic day 14.5. In addition, Meis1-deficient embryos lack well-formed capillaries, although larger blood vessels are normal. Definitive myeloerythroid lineages are present in the mutant embryos, but the total numbers of colony-forming cells are dramatically reduced. Mutant fetal liver cells also fail to radioprotect lethally irradiated animals and they compete poorly in repopulation assays even though they can repopulate all hematopoietic lineages. These and other studies showing that Meis1 is expressed at high levels in hematopoietic stem cells (HSCs) suggest that Meis1 may also be required for the proliferation/self-renewal of the HSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeodomain Transcription Factor Meis1 Is a Critical Regulator of Adult Bone Marrow Hematopoiesis

Hematopoietic stem cells in the bone marrow have the capacity to both self-renew and to generate all cells of the hematopoietic system. The balance of these two activities is controlled by hematopoietic stem cell-intrinsic regulatory mechanisms as well as extrinsic signals from the microenvironment. Here we demonstrate that Meis1, a TALE family homeodomain transcription factor involved in numer...

متن کامل

MEIS1 regulates early erythroid and megakaryocytic cell fate.

MEIS1 is a transcription factor expressed in hematopoietic stem and progenitor cells and in mature megakaryocytes. This biphasic expression of MEIS1 suggests that the function of MEIS1 in stem cells is distinct from its function in lineage committed cells. Mouse models show that Meis1 is required for renewal of stem cells, but the function of MEIS1 in human hematopoietic progenitor cells has no...

متن کامل

New Brucella abortus S19 Mutant to Improve Distinction Between Infected and Vaccinated Animals

Background: Using Brucella abortus Strain 19 (S19) to control bovine brucellosis is restricted due to induce antibodies to the O-side chain of the smooth lipopolysaccharide (LPS) which may be difficult to differentiate vaccinated and infected animals. Furthermore, it is virulent for humans and can induce abortion to cattle. Objectives: The aim of...

متن کامل

Effect of Propranolol on Angiogenic Factors in Human Hematopoietic Cell Lines in vitro

Background: Beta-adrenergic blocking agents have been broadly used for treatment of many cardiovascular diseases such as arterial hypertension and ischemic heart failure. Anti-tumoral, anti-inflammatory and anti-angiogenesis effects of propranolol (a non-selective beta-adrenergic blocker) have been shown. Angiogenesis (replenish of the pre-existing vascular networks) plays a critical role in s...

متن کامل

Dual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.

Myeloid ecotropic viral integration site 1 (Meis1) forms a heterodimer with Pbx1 that augments Hox-dependent gene expression and is associated with leukemogenesis and HSC self-renewal. Here we identified 2 independent actions of Meis1 in hematopoietic development: one regulating cellular proliferation and the other involved in megakaryocyte lineage development. First, we found that endogenous M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2004